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Paris, France 

Received 25 June 1985, in final form 23 September 1985 

Abstract. We compute explicitly the time-dependent Schrodinger and heat propagator for 
the potentials - [h2m(m+l)] /cosh2 Ax, a S function potential, several cases of periodic 6 
function potentials and a S function potential in a square well. We also discuss the 
semiclassical approximation for the 6 function potential. 

1. Introduction 

There are few time-dependent Schrodinger propagators that can be computed explicitly. 
Except for the case of quadratic Hamiltonians [1,2] (which includes the harmonic 
oscillators with constant electric or magnetic field) where the path integral can be done 
exactly and is equal to its semiclassical approximation, or for systems which are in 
some sense free [2], we know only the example of the knife edge [3,4] and the case 
of reflectionless potentials [5,6]; in all these cases, the propagator is a superposition 
of Gaussians. Note that we distinguish the time-dependent propagator from the 
energy-dependent Green function for which many more explicit examples are known 

The object of this paper is to compute three other examples of time-dependent 
propagators: the first is the cosh-2 x potential (also studied in [5]; however, our method 
is different); the second one is the 6 function potential which can be done both by 
functional integrals and by spectral resolution; the third set of examples are various 
combinations of 6 potentials, two cases of periodic 6 potential and a 6 potential in a 
square well. 

In principle, one can recover the time-dependent propagator by Fourier trans- 
forming the energy-dependent propagator but this may not be very explicit; for example, 
the cosh-’ x potential has a very simple time-dependent propagator, but a complicated 
energy propagator (see [8]); the same remark applies to some cases of 6 function 
potentials for which the energy-dependent propagators have been computed in various 
situations (see [7] for general information on 6 function potentials). 

One of the reasons why it is important to obtain a simple expression for time- 
dependent propagators is the study of non-stationary problems in quantum mechanics. 
In particular, the influence of an external random environment depending on time and 
the relation between quantum dissipation and tunnelling can be satisfactorily handled 
only if we know the time-dependent propagators of the non-perturbed problems. 

~ 7 ~ 8 ~ 9 1 .  
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2. The potential cosh-’ x 

We start with a general remark. Suppose that one can solve both the heat equation 

a2v/ax2= cpu+av/at (2.1) 

and the eigenvalue problem 

a2f/dx2 = cpf -t- h, f 
where cp is a given function of x and h, a given constant. We define 

U(X, t )  = av(x, ?)/ax - V(X, t)f’(x)af(x)/ax. (2.3) 

A direct calculation shows that U satisfies the heat equation 

(2.4) 

This procedure is analogous to the identity employed by Darboux [ 101 for eigenvalue 

Suppose now that we want to solve the initial value problem 
problems. 

au - a’u + [ hl+f1”’f-2f’($)*]u 
a t  ax’ ax2 u / , = ~ =  uo. 

First return to equation (2.1), defining vo(x) by 

u0(x) = avo/ax - v0 f laflax. 

Thus 

vo(x) = f(x) 1; uoo dx’. 
f ( x 7  

We then consider the initial value problem 

av azo 
a t  ax2 

QV v / , = o  = v o .  -=-- 

(2.5) 

(2.7) 

Our assumption is that we can solve (2.7) explicitly by a function U( t ,  x). We return 

(2.8) 

It is clear, by our previous calculations, that it solves (2.5) and that it is uo at t = 0. 
We apply this method to the case 

to (2.5) by the formula 

U( t ,  X )  = av/ax  - vf laflax. 

f (x)  = cosh-P Ax. 

Then 

_- a2f p2h2  - p ( p  + I ) A *  
ax2 - coshP Ax coshP+’ Ax’ 

Fix an integer m and choose p = -( m + l ) ,  then 

a’f m ( m + l ) A 2  
ax2 - - cosh‘ Ax f+[(m+l)AI’.f -- (2.9) 
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Define 

A 2 m ( m + l )  
cosh’ Ax P m + l  j - 

fm+,  = Coshm+’ AX 

hm+l = [ ( m  + 1)AI’ .  

If we can solve 

a v l a t  = a2u/ax2 - pmtlu 

then the function U 

U = a u / a t  - U( m + 1 ) A  tanh Ax 

satisfies (2.5) with fmtl  and hm+l: 

a u  a2u (2.12) 

The term in square brackets in (2.12) is exactly 

(m + 1)( m + 2)A ’ - 
= -(Pm+z(X) cosh’ Ax 

so that if we can solve (2.10)m+l, we can also solve (2.10)m+2 by the transformation 
(2.11)m+1* 

Suppose, for example, that we want to solve 

a u  a2u 2A’ 
- +- 

a t  ax2 cosh2x 
U ul ,=o= uo. --- 

Call Go(x - xo, t )  the free propagator of 

a u l a ?  = a 2 v / a X 2  vl*=o= uo. 

We start with (2.6) and define 

uo(x’) dx’ u0( x)  = cosh AX - 1; cosh Ax’ 

then solve (2.14) by 

and apply (2.6) to obtain 

(2.13) 

(2.14) 

xo uo(xI) 
Go(x - xo, t )  cosh Ax,( 1. - dx’) dx,] ax cosh Ax’ 

xo uo(x’) dx‘ ( 5 .  cosh Ax’) dxo’ 
Go(x - xo, t )  cosh Axo 
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This does not depend on the choice of a and integrating by parts using a = -CO, 

we obtain 

u ( t , x ) =  J dx‘U,(X’) [  c 0 ( x - x ’ ,  t )  

3 Go(y, t )  sinh Ay dy (cosh Ax cosh Ax’)-’ (2.15) 

which is equivalent to Crandall’s expression [ 5 ] .  This formula gives the kernel 
pj2’(x,  x ‘ )  of equation (2.10)~. 

Denote in general by Pl”’+’)(x, x ’ )  the propagator for (2.10),,,+,; we can obtain the 
propagator of equation (2.10),+* 

P j m + 2 ) (  x, x ’ )  = - -A  (m + 1) tanh Ax 

(2.16) 

The Schrodinger propagator is obtained by changing t into i t  in these formulae. 

3. The potential S(x): propagating H = -ka2/ax2)- aS(x) 

3.1. Using functional integrals 

We first recall some facts about standard Brownian motion Ell, 121. Call 6, the 
Brownian path starting at t = 0 from x = 0. The reflected Brownian path is lb,l and its 
local time spent at x = 0 up to time t is 

where ,yro+sl is the characteristic function of the set [0, +E] ;  this random variable exists 
by a theorem of Levy [12, p 681. 

Now, there is another way to describe the reflected Brownian motion and its local 
time. Let 

X (  t )  = - b, + max b, 
o s s s r  

e(  t )  = max b,. 
o s s = r  

(3.2) 

It is known that the process ( X ( t ) ,  O ( t ) )  has the same joint laws as the process 

Suppose now we consider the initial value problem 
(lbrl, ~ ( t ) )  defined above (see [ll] or [12]). 

a u / a t  = f a 2 u / a x 2 +  a s ( x ) u  u/ ,=o  = uo. (3.3) 

au, /a t  =f a u , / ~ x ’ + ( a / 2 ~ ) , y ~ _ , , , ~ ( x ) u ,  = uo. ( 3 . 3 ) E  

We approach this problem by the following: 
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For problem (3.3), we have a probabilistic solution by the Feynman-Kac formula 

Suppose now that we start at time t = 0 from x = 0. The corresponding propagator 
is 

It is clear that this depends only on 1x1 and if a < 0, by Lebesgue theorem, this 
tends to 

K(x' ,  t 10) dx'=~E,(exp(a.r(t))X(Ib,l€ dx')). 

However, by the previous remark, this is 

K(x' , t /O)dx'=&, exp amaxb ,  x -br+maxb,Edx'  ( ( s s r  ) ( s s r  

Now by McKean [12, p 271, it is known that 
1/2  ) = (3) (2y- x)  exp - ( ( 2 y i x ) 2 ) x ( y  > x)  dy dx 

and so 

( T + x )  exp[-(.r+x)*/2t] dT dx K (x, t IO) dx = [lo+= eRT( 3) ' I 2  I 
and after a slight transformation we obtain 

1 
K(x, t / O ) = -  exp(-x2/2t) +- a e+" exp[ - ( t+ I~ l )~ /2 t ]  d t .  (3.5) 

( 2  7 r t ) " 2  (2Tt)'/2 

This formula has been derived rigorously if a s 0. However we can continue it to 

Next we obtain the propagator starting from any xo. Consider the Brownian path 
a > 0 also, because the integral is still absolutely convergent. 

starting from xo 

K(x, t 1x0) dx = E(exp(a.r(t))X(x,+ b, E dx)).  

We call To the first hitting time of point 0. 
For t < To, T( t )  = 0 obviously. Using the Markov property we obtain 

~ ( x ,  tlxo) dx=E,{x(~o<t)Eo(exp[a.r(t-  ~ o ) I ~ ( b r - , , ~ d x ) ) I  

+ Eq,(x( To> t ) ,  br E dx)  

(3.6) = I ,  + I 2  

where Ex, is the conditional expectation of the path knowing that it starts at xo at t = 0. 
Suppose that xo>O; it is well known that 

Prob,( To E ds)  = ( ~ T s ~ ) - ' / ~ x ,  exp( -x;/2s) ds 

see [ 11, 121 so that in general 
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Moreover 

1 2  = E,(x(  To> t ) ,  b, E dx) 

is the solution of the Dirichlet problem 

au la?  = Sa2u/ax2 u(0, x)  = S(x -xo) U( t, 0) = 0 

where x, xo are of the same sign and is 0 if x and xo are not of the same sign so 

12=(2.rrt)-”2[exp ( - l ~ ~ - x / ~ / 2 t ) - e x p (  - \ ~ ~ + ~ ) ~ / 2 t ) ]  x(x,xo>O) dx. (3.8) 

Combining these results we obtain that the heat propagator of the potential aS(x) 
is given by 

K(x, t /xo ,O)=[Go(x-xo ,  t ) -Go(x+xo,  t)lx(xox>O) 

+ j d ~ d s ( 2 . r r s 3 ) ~ 1 ~ 2 ~ x o ~  exp( -xi/2s)K(x, t - s l O )  (3.9) 

where Go(x, t )  = ( 2 ~ t ) - ” ~  exp(-x2/2t) is the free Gaussian kernel. For example (3.9) 
can be simplified to 

r +oo 
K(x, t ly ,O)=G,(x-y, t )+a J dueauGo(lxl+lyl+u, t ) .  (3.10) 

0 

We now check directly that this expression satisfies (3.3); it is clear that it satisfies 

At 0, the equation means that 
the equation outside 0 with the appropriate initial condition. 

$ ‘ (O+)  - +’(o-) = -2a+(O). 

We check this boundary condition directly: 

= 2 a  =-2aK(O, t l y ,O) .  

3.2. Using spectral resolution 

We provide a second derivation of the propagator of equation (3.3). Consider the 
spectral resolution of 

(+az/ax2 + aaO) u = - k2u. (3.11) 
This is satisfied by cos(fiklxl-6(k)),  where the phase shift 6 ( k )  is given by 

tan 6 (  k )  = - a /  kf i .  (3.12) 
Then 

+m 

exp(-k2t) cos(&k(xl-S(k)) cos 6 ( k )  dk 
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assuming that the spectral function is a constant C. This last integral can be calculated 
and we obtain 

+m 1 
- K(x, t 10) =f I exp(ifik(x1) exp(-k2t) dk  
C -ac 

exp(-k’t) exp[i(fiklx)-26(k))]  dk. (3.13) 

Using ( 3 . 1 2 )  and the identity 

1 
exp[+ip( k - i d ) ]  d p  u<O k - i a f i =  Jo 

we obtain 
t a c  

exp(-k2t) exp[i(fiklxl--26(k))] dk 

+oc 

exp(-k2t) exp(ifiklx1) dk 

r +oc 

On the right-hand side we see that the free propagator appears. Adjusting C so 
that for t + O +  K(x, t l O ) +  S(x), we obtain the same formula as (3.10) for y =O. 

3.3. A periodic propagator 

We use the preceding method to obtain an explicit example of a propagator in a 
periodic potential. 

We consider the unit circle parametrised by x E [-T,  75-1 with periodic boundary 
conditions and consider the Schrodinger equation 

{d2/dx2 + U [  S(X) - S ( X  - ..)]}U = - k 2 U  (3.15) 

with 27r periodic condition on U. 
We define the Jacobi theta function 

+ac 

o ~ ( z ,  t )  = exp(i7rtk2) exp(2kiz). (3.16) 
k = - m  

As before, the S potential is expressed as a boundary condition. Using 0 3 ( x ) +  
27rS(x )  if t + 0, we find as above that 

’ 2 T  

This is formally similar to the non-periodic case (3.10) except that we replace Go 
by a Jacobi theta function. The general case K ( x ,  t l y ,  0) follows from (3.10) by 
replacing Go by the Jacobi theta function. 
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3.4. Physical time in the Schrodinger equation and semiclassical approximation 

For the physical time in the Schrodinger equation, the 'time' of our heat kernel formulae 
becomes pure imaginary. We denote the Schrodinger propagator by G(x, f ly)  so that 
( H  - ia/at)  G = 0 and G is obtained from the K of (3.10) by the replacement t +. it. 
In particular for the free particle 

(3.18) G,(x, f l y )  = (2i7rt)-'I2 e ~ p [ i ( x - y ) ~ / 2 t ]  

and for H = -$d2/du2-a6(x) 

G(x, t ly)=G,(x,  t ( y ) + a  dueaUGo(lx/+Iyl+u, t l0) .  (3.19) 

Until now, we have written h = 1 to simplify the notation. First we reinstall h in 

Io+m 
the time-dependent propagator (3.19) to yield 

G(x, t l y )  = (2xhit)-'/ ' exp[i(x- ~ ) ~ / 2 h t ]  

(3.20) 

where 6 = 1x1 + lyl. In principle the semiclassical approximation for G would be the 
replacement of G by exp(iS(x, t ;  y ) / h )  with S the classical action. However, this is 
not particularly informative for the following reasons. 

First consider the case a < 0 (i.e. repulsive 6 function). In the spirit of (3,1), this 
can be thought of as the limit of repulsive step functions of width E, height - a / &  ( E  

tends to 0). 
For y < 0 and x > 0 and given t ,  there is in fact a classical path for any positive 

non-zero E, but a simple calculation shows that the classical action along this path is 
asymptotic to $(x-y) ( - -2a /~) ' / '  and this tends to CO for E + O .  To the extent that 
meaningful conclusions can be drawn from this, it suggests there should be no trans- 
mission through the barrier in the h + 0 limit (imagine E held fixed at a small value; 
then the large value of S -  l /& will make the integral using exp(iS/h) have rapidly 
varying phase beyond that already due to l / h ) .  

In fact, this preliminary conclusion is not entirely misleading since we can examine 
the small h approximation for G in (3.19). 

For the case of interest x > 0 > y, 6 also equals x - y. For the integral over U, we 
do an asymptotic expansion which, because there are no stationary points on the 
contour of integration, is given simply by the terms in the exponential linear in U ;  thus 

G(x, f l y )  - ( 2 i ~ h t ) - ' / ~  exp(ie2/2ht) 1 +- du exp T+- . [ hrjarr (nhu i31 (3.21) 

Recall a < 0; we perform the integral; its leading term precisely cancels that from 
Go so that 

(3.22) 

This is smaller by a factor h than the usual propagator, giving more precise 
information than the hints obtained from an earlier semiclassical calculation. For the 
case that x and y have the same sign, there is no exact cancellation since now 
6 = 1x1 + lyl Z x - y  and a short calculation shows that the 6 function now acts like a 
mirror with an order h term getting through the mirror. 
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The failure of the semiclassical approximation in this case can be ameliorated by 
redefining that approximation in the manner of Keller’s geometric diffraction theory. 
That is, to lowest order, paths do not get through the 6 function, but there is a ‘diffracted 
ray propagator’, reduced by a factor h which is given by (3.22). Its strength is also, 
reasonably, inversely proportional to lal. This is in the spirit of Keller’s work [13] 
where‘an exact solution was used to suggest the form of diffracted rays that entered 
regions inaccessible in classical geometrical optics. 

Now, consider the case a > 0 (an attractive 6 function), Again a simple classical 
mechanics calculation gives S - ( t2/2t)(  [ = x - y ,  x > 0 > y )  with only O(&) correc- 
tions due to the well of depth a / &  and width E .  The h + 0 limit of (3.20) is trickier 
since the integral ostensibly diverges in the sense of functions, but it is standard 
procedure to assume a small imaginary part in the mass (not explicitly written in our 
formulae) to ensure convergence. The growing exponential in (3.20) now implies that 
the integral will be of maximum norm for large positive U, so that we extend the 
integral to --CO and integrate formally. More precisely we write 

a jo+m duexp  ( a u  T+- i ( t+u)’)  
h2 h 2ht 

au i(5-U)’ +m +m 

=4 h I -m -$Io du exp( - g + ~ ) .  
However, this last integral is exactly the one which was computed in (3.21) (except 

for a change a + -a, [+ -5) and so it exactly cancels the Go term which is insensitive 
to a and to the sign of [ and leaves a term of the form (3.22). Therefore 

i [ii U 
=- Go([, t 10) + g  exp(-a[/h2) exp(ia2t/2h3). 

at (3.23) 

Although the second term in this expression appears large for h + 0 it is in fact the 
ground state contribution to the time-dependent Green function and is significant only 
in the small region 1x1 + ( y (  s h 2 /  a. This result is totally at variance with the semiclassical 
hint which suggested that the attractive 6 function should be invisible. In fact it is as 
fully effective as a barrier as the repulsive potential except for a small enhancement 
near the origin. 

4. Combination of a potential and a 6 function 

Let Hv = - f  d2/dx2+ V ( x )  

H1 = A  W(x). 

Call Gv(x, t I y )  the propagator for 

i a / a t  = Hv 
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and K the propagator for 

i a l a t  = Hv + H, . 
We obviously have the integral equation 

K(x, t l y )=Gv(x ,  t ly)- i  d s  dzGv(x ,s (z )W(z)K(z ,  t - s l y ) .  lof I 
For W( 2)  = AS( z ) ,  this equation becomes 

K(x, t l y ) =  Gv(x, tly)-iA dsGv(x,slO)K(O, t - s l y ) .  (4.1) 

q v ( s ) =  Gv(0, ~ ( 0 )  

5: 
We call 

d s )  = K(0 ,s lO)  

and 

& ( P I  = e - c I 1 d s )  ds I:r 
and the same for cp(s). Then the Laplace transform of (4.1) gives 

$ ( P I  = $ v ( P ) / ( 1  +MV(PL)).  (4.2) 

If we can explicitly invert the Laplace transform of (4.2) we immediately obtain 

K(x, t ( 0 )  = Gv(x, t ( 0 )  - ih ds  GV(x, s (O)cp( t - s) 

and then by (4.1) the general kernel K ( x ,  t l y ) .  

proper spectral function. 
The advantage of this method is that we do not have to compute (or guess) the 

4.1. The propagator for a periodic Dirac potential 

We consider the following potential: 

+m 

W ( x ) = a  S ( x - n L )  
n=- - I :  

and we want to find the propagatof for the heat equation 

a l a r  =$a2ax2+ w(x). 

As usual, we call Go the free propagator 

If G(x, f l y )  is the propagator with the periodic Dirac potential, we have by 
integrating (4.4) 

l - I  

G(x, tly)=G,(x, r ( y ) + x a  dsGo(x, t - s (nL)G(nL , s \y ) .  (4.5) 
n o  J 
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Define 

f(p) = e-py( t )  d t  

for any function f( t ) .  We have in particular 

(4.6) 
1 

&O(X, p Iv) =- e x p ( - G l x  -vb. 
(2p)"2 

Take y=O,  x = j L  ( j  integer) in (3.5) and take the Laplace transform of (4.5). 
Taking into account (4.6), we obtain 

This can be rewritten as an infinite system of linear equations for the unknown 
numbers 

x, = &jL, p 10) (4.7) 

with the given Y ,  

f c C  c [s(J-n)-aY,- . ]x ,= Y ,  
n=-% 

Define 

We deduce immediately that for any 0 

( 1  - a?(e))R(e) = ? ( e )  
and 

We can also take j 2 0; a trivial computation gives 

? ( e )  A 
1 - a u ( e )  1-25 COS e 1= 

where 
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and so at least for a sufficiently small 

However 

and we have to consider two cases. 
( 1 )  j is even; j = 2; 
Then n must be even; n =2q and 

X 2 7 = A  k 2 q (  2q ) = 
q 2 y  q + J  

and so 

x , ~ =  A ~ ~ J F ( J + ~ , J +  1; 2J+ 1; ( 2 5 1 ~ )  

where F (  a, p ;  y ;  z )  denotes the hypergeometric function. 
(2) j is odd; j = 2 j +  1 .  
Then n must be odd; n = 2q - 1 and 

and so 
x 2 1 + 1 -  - - A ~ ~ J + ' F ( J + ; , J +  1; 27+2; (251~)  

In both cases, this can be rewritten as 

x , = A S I F ( f j + l , t j + f ; j + l ;  (25)2). 

If we recall that Xj was defined by (4.7) and A and 5 by (4.8), we can rewrite this 
as 

with j a positive integer and 

1 - e x p [ - 2 ( 2 / ~ ) ' / ~ ~ ]  a( 1 + exp[ -2(2p ) 1 ' 2 ~ ]  - a{ 1 - exp[ -2(2p)" '~]}) 

exp[ - 2 ( 2 ~ ) ' / ~ ~ ]  
1 +exp[-2(2p) '12~]  - a(1 - e ~ p [ - 2 ( 2 p ) ' / ~ ~ ] }  

A =  

5 =  

and we can recover the time-dependent propagator by simply inverting the Laplace 
transform (recall that p is the Laplace variable associated with t ) .  Clearly the general 
propagator between two general points is much more complicated. 

4.2. A Dirac potential in a square well 

We consider now an infinite square well of length 2b and centre 0. The associated 
potential is then 

if 1x1 < b {: if Ix(> b. 
V ( x )  = 
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We call Ho the Hamiltonian of this square well; Ho is just -; d2/dx2 with boundary 
conditions 0 at *b. The propagator of the square well denoted by GSw(x ,  f l y )  is 
defined by the formula 

+m 

Gsw( x,  t I y ) = [ Go( x - y + 4nb, t I 0 )  - Go( x + y + 2 b( 2n + 11 ,  t I O ) ]  
n=-m 

for 1x1 and Iyl< b 

Gsw(x,  ~ I Y ) = O  if 1x1 or Iyl> b (4.10) 

and Go(x ,  t I y )  is the usual free space propagator. In fact, it is clear that Gsw(x,  t I y )  
'satisfies the propagation equation in 1x1 < b and tends to 6 ( x  - y )  if t + O+. Moreover, 
it satisfies the boundary condition 

Gsw( * b, t I Y 1 = 0 
because if we take the term Go( b - y +4nb, t IO)  in (4.15) it has an exponent containing 
ly-(4n+l)b)12 and this exactly cancels the term - G o ( b + y + 2 b ( 2 p + l ) ,  t l0 )  which 
has an exponent containing ly+(4p+2+1)bl2 if 4 p + 2 + 1 = - ( 4 n + l )  or p = - n - 1 .  

Let us now put a Dirac potential of intensity -a at point 0. The Hamiltonian is 
then H = -: d2/dx2- a S ( x )  on [-b, +b]  with boundary conditions 0 at *b. The 
propagator for this Hamiltonian H is G ( x ,  t I y )  defined by the formula 

(with the convention (4.10) if 1x1 + lyl+ U > b) .  
In fact, it is clear that G(x, t I y )  satisfies the propagation equation outside 0 in 

[-b, +b]  and also the boundary condition at *b. The only problem is to check the 
boundary condition at 0. Fix y # 0 in [ + b, + b ]  

G ( x , t I y ) = G s w ( x , t l y ) + a  du eau GSw(lxl+ly(+u, t l o )  

and so 

aGsw 
ax 

du eau - (lyl+ U, t IO). 
aG aG 
-(0+, t ( y ) - - ( O - ,  t l y ) = 2 a  
ax ax 

(we have used the boundary condition at b) .  
Integrating by parts and remarking that 

we obtain the boundary condition at 0 
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